Cloning and Expression of Randomly Mutated Bacillus subtilis α-Amylase Genes in HB101

نویسندگان

  • Mohammed Rabbani
  • Hamid MirMohammad Sadeghi
  • Fatemeh Moazen
  • Mehran Rahimi
  • Golnaz Salehi
چکیده

The aim of this study was to isolate and express the randomly mutated α-amylase gene from B. subtilis strain 168. BS168F: 5'-gtgtcaagaatgtttgc-3' and BS168R: 3'-gttttgttaaaagatga-5' primers were used to amplify the amylase gene using the following cycle in error-prone PCR method: 94°C for 30 s, 40°C for 2 min, and 72°C for 2 min in 30 cycles that were followed with 72°C for 2 min as a post cycle. E. coli XL1 blue was used as host for plasmid construction. Amylase enzyme activity assay was performed using continuous spectrophotometric procedures. Results of sequencing showed that sequence was cloned from the first ATG and with the correct open reading frame. Having confirmed the integrity of the insert, the gene was ligated into expression vector pET-15b and then further confirmed using digestion analysis. Amylase activity showed 3 clones with higher enzymatic activity compared with the wild type. Error-prone PCR method produced a mutated gene that provides amylase activity much higher than that of wild type. Sequencing the mutated genes should shed light on the important region of the genes that could be manipulated in future studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Enhanced Expression of an Extracellular Alkaline Protease from a Soil Isolate of Bacillus clausii in Bacillus subtilis

in the detergent industry. In this study, the extracellular alkaline serine protease gene, aprE, from Bacillusclausii was amplified by PCR and further cloned and expressed in B. subtilis WB600 using the pWB980 expression vector. Protease activity of the recombinant B. subtilis WB600 harboring the plasmid pWB980/aprEreached up to 1020 U/ml, approximately 3-folds higher than the nativ...

متن کامل

Secreted expression of a hyperthermophilic α-amylase gene from Thermococcus sp. HJ21 in Bacillus subtilis.

The hyperthermophilic α-amylase from Thermococcus sp. HJ21 possesses unique traits (Ca(2+)-independent thermostability and optimal temperature of 95°C) that make it a great potential candidate for use in the food industry. However, this Archaea isolated from a deep-sea thermal vent requires strict control of culture conditions and produces only small amounts of α-amylase. To solve these problem...

متن کامل

MOLECULAR CLONING AND EVALUATION OF WILD PROMOTER IN EXPRESSION OF BACILLUS SPHAERICUS PHENYLALANINE DEHYDROGENASE GENE IN BACILLUS SUBTILIS CELLS

To evaluate the role of wild promoter of L-phenylalanine dehydrogenase (PheDH) gene, referred to as pdh, from Bacillus sphaericus in expression, cloning of pdh gene in Bacillus subtilis was performed. The whole pdh gene was cloned in pHY300PLK shuttle vector and amplified, construct (pHYDH) then transformed in B. subtilis ISW1214 and E. coli JM109. The pdh endogenous promoter presented no effec...

متن کامل

Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

BACKGROUND Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and p...

متن کامل

The Theoretical Study on a Nano Biosystem Consisting of Nano Tube-Catalytic Site of Bacillus Subtilis α-Amylase, PDB: 1UA7

α-Amylase has been studied extensively from various sides. This enzyme is used in many industries .Many applications of this enzyme have encouraged us for greater attempts on the study of α-amylase and to search for more effective processes. In this investigation, the structure of nanotube - catalytic site of bacillus subtilis α- amylase was optimized by hype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011